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ABSTRACT 

This study investigates the impact of different soil and water conservation technologies on the variance of 
crop production in Ethiopia to determine the risk implications of the different technologies in different 
regions and rainfall zones. Given the production risks posed by climate change, such information can be 
used by decision makers to identify appropriate agricultural practices that act as a buffer against climate 
change. Using a household- and plot-level data set, we apply the Just and Pope framework using a Cobb-
Douglas production function to investigate the impact of various soil and water conservation technologies 
on average crop yields and the variance of crop yields, while controlling for several household- and plot-
level factors. Results show that soil and water conservation investments perform differently in different 
rainfall areas and regions of Ethiopia, which underscores the importance of careful geographical targeting 
when promoting and scaling up soil and water conservation technologies. We find that although soil 
bunds, stone bunds, grass strips, waterways, and contours all have very significant positive impacts on 
average crop yields in low-rainfall areas, only soil bunds have significant risk-reducing effects in these 
areas with low agricultural potential. We also find that irrigation and use of improved seeds have 
insignificant risk-reducing effects in low-rainfall areas, suggesting that—as currently implemented—these 
interventions may not be appropriate adaptation strategies for these environments. Regionally, in the low-
rainfall areas we find significant spatial heterogeneity, with soil bunds being risk reducing in Oromiya 
and Amhara, and stone bunds, grass strips, and waterways being risk reducing in the Southern Nations, 
Nationalities, and Peoples Region. Irrigation was only risk reducing in the high-rainfall areas of 
Benishangul-Gumuz. These results remain robust even after controlling for the major crops grown on the 
plot. Results show that soil and water conservation technologies have significant impacts on reducing 
production risk in Ethiopia and could be part of the country’s climate-proofing strategy. However, results 
also show that one-size-fits-all recommendations are not appropriate given the differences in agro-
ecology and other confounding factors.  
 
Keywords : Just and Pope, risk increasing, risk reducing, Ethiopia, stone bunds, soil bunds, 
waterways, grass strips, contours, soil and water conservation, low-rainfall areas, high-rainfall 
areas, climate change 
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1.  INTRODUCTION 

Awareness of climate change and global warming has dramatically increased among scientists, 
policymakers, and the general public (Nordhaus 1992, 2007; IPCC 2001, 2007; Crutzen 2002; Walther et 
al. 2002; Parmesan and Yohe 2003; Root et al. 2003). Agriculture in developing countries is one of the 
sectors that is most vulnerable to the negative impacts of climate change (Rosenzweig and Parry 1994; 
Reilly et al. 1996; Reilly and Schimmelpfennig 1999; Kates 2000; McGuigan et al. 2002; 
Kurukulasuriya et al. 2006; Seo and Mendelsohn 2008), and failure of farmers to adapt to climate change 
would likely have significant negative effects (Mendelsohn et al. 1994; Rosenzweing and Hillel 1998; El-
Shaer et al. 1997). Given Ethiopia’s dependence on natural resources and agriculture, any adverse effects 
of climate change on the agricultural sector would pose great risks to economic growth and livelihood in 
the various regions of the country.  

The identification of adaptation options can help farmers to maximize future income under new 
climate conditions (Seo and Mendelsohn 2008), supporting poverty eradication and sustainable 
development. Promotion of soil and water conservation (SWC) technologies has been suggested as a key 
adaptation strategy for countries in the developing world, particularly in sub-Saharan Africa to mitigate 
growing water shortages, worsening soil conditions, and drought and desertification (Kurukulasuriya and 
Rosenthal 2003). 

Although SWC technologies are generally low-cost interventions, they can still be too risky for 
very low-income, risk-averse households, which are typical in rural Ethiopia (Dercon 2004; Yesuf and 
Bluffstone 2007). Thus, in the adoption of technologies, farmers consider not only impacts on crop yields 
but also risk effects (Yesuf 2004; Shively 2001; Shiferaw and Holden 1999; Kassie et al 2008). SWC 
techniques are used in many areas to adapt to the drier, degraded conditions brought on in part by changes 
in climate. According to our household survey data, more than 30 percent of farmers took up SWC 
measures in response to climate change perceived as changes in temperature and rainfall over the last 20 
years. This finding from our household survey suggests that farmers are using SWC technologies as one 
of the adaptation or mitigating options to cope with climate change, which is also one of the climate 
change micro-level adaptation investments recommended by the CEEPA (2006) for Ethiopia. This study 
investigates the risk implications of various SWC technologies for crop production in Ethiopia using the 
parametric stochastic production function framework of Just and Pope (1978). The analysis identifies the 
risk-increasing and risk-reducing effects of different SWC technologies on crop production in the 
different agro-ecological environments of the Ethiopian Nile basin to isolate which technologies are best 
suited to particular regions and agro-ecological niches. This empirical evidence can help improve 
geographical targeting of soil conservation techniques by policymakers, extension agents, 
nongovernmental organizations, and other development agencies as part of an effort to promote 
adaptation to climate change at the farm level.  

The study also contributes to the very limited local and international literature linking SWC to 
production risk. Several studies have assessed the impact of crop varieties and inorganic fertilizer on the 
mean and variance of crop yields (Just and Pope 1979; Antle 1987; Traxler et al 1995; Smale et al. 1998; 
Kim and Chavas 2003); but few have investigated the risk effects of SWC technologies (Shively 1998; 
Byiringiro and Reardon 1996; Kaliba and Rabele 2004; Kassie et al. 2008).  

The remainder of the paper is organized as follows: Section 2 provides the theoretical framework 
of the Just and Pope stochastic estimation that has been used in the analysis. Section 3 describes the study 
area, data, sampling procedures, estimation procedures, variables used, and econometric diagnostics used. 
Section 4 presents the descriptive and econometric results and provides a discussion of these results. 
Section 5 concludes with recommendations arising from the empirical analysis. 
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2.  THEORETICAL FRAMEWORK 

In the study, the Just and Pope stochastic production frontier framework (1978, 1979) is used to estimate 
the effects of SWC technologies on both the mean and the variance of the value of crop production per 
acre in the low- and high-rainfall areas of Ethiopia. The Just and Pope parametric approach allows yield-
enhancing inputs to have either a negative or a positive effect on the variance of yield by relating the 
variance of output to explanatory variables in a multiplicative heteroskedastic regression model. The 
stochastic production function is represented as y = g(x, v), with y representing the output; x, the inputs 
being used; and v, the weather conditions that are unknown at planting time. Just and Pope (1978) 
proposed to specify g(x, v) = f(x) + [h(x)]1/2 e(v), where h(x) > 0 and e(v) is a random variable with mean 
zero and variance h(x)). This implies that f(x) represents the mean production function, and h(x) is the 
variance of output, where E(y)= f(x) and Var(y) = Var(e) h(x) = h(x). Given ∂Var(y)/∂x = ∂h/∂x, it 
follows that ∂h/∂x > 0 identifies inputs x that are risk increasing, and ∂h/∂x < 0 identifies inputs that are 
risk decreasing. Note that e(v)[h(x)]. With mean zero and variance h(x), 1/2 behaves like an error term. 
This reflects the fact that the Just-Pope specification corresponds to a regression model with 
heteroskedastic error term. After choosing a parametric form for f(x) and h(x), Just and Pope proposed 
estimating the model either by using a three-stage feasible generalized least squares (FGLS, also called 
three steps) or by full information maximum likelihood (FIML) estimating f(X) and h(X) functions 
simultaneously, with the latter estimator being more efficient than the FGLS.  

The Just and Pope framework has been widely used in previous studies (Smale et al. 1998; 
Widawsky and Rozelle 1998; Di Falco and Perrings 2005). It is applied in this study to investigate the 
effects of SWC technologies at the plot level on crop production. This analysis provides information on 
the risk effects of these investments across the varying rainfall conditions of the Nile basin in Ethiopia.  
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3.  STUDY AREA, DATA, AND ECONOMETRIC ESTIMATION 

Study Area 

Data for this study were collected for the Nile basin within Ethiopia covering five regions: Tigray, 
Amhara, Oromiya, Benishangul-Gumuz (BG), and the Southern Nations, Nationalities, and Peoples 
Region (SNNPR). Amhara is the biggest region in the Nile basin of Ethiopia, covering 38 percent of the 
total area, followed by Oromiya (24 percent), BG (15 percent), Tigray (11 percent), and SNNPR (5 
percent), according to the Ethiopian Ministry of Water Resources (1998). 
 

Soil and Water Conservation Technologies Used in Ethiopia 

Typical SWC technologies used in Ethiopia include soil bunds, stone bunds, grass strips, waterways, trees 
planted at the edge of farm fields, contours, and irrigation (chiefly water harvesting) (Table 1). Both soil 
and stone bunds are structures built to control runoff, thus increasing soil moisture and reducing soil 
erosion. Considering it is costly to protect wide areas of land with soil and stone bunds and difficult to 
construct continuous bunds, alternative methods of erosion control are being employed as well, including 
grass strips and contour leveling, sometimes with trees or hedgerows. Grass strips reduce runoff velocity, 
allowing for water to infiltrate and trap sediments. Waterways help to direct precipitation flows along 
specified pathways in farm fields. Water-harvesting structures include dams, ponds, and diversions to 
ensure water availability during the dry season.  

Table 1. Proportion of plot-level soil conservation structures by region and rainfall regimes 

Variable Soil bunds Stone bunds Grass strips Waterways Trees Contours Other Irrigation 

By region 

Tigray 0.63 0.16 0.06 0.00 0.03 0.00 0.00 0.01 

Amhara 0.16 0.17 0.01 0.36 0.04 0.01 0.01 0.04 

Oromiya 0.25 0.06 0.02 0.25 0.07 0.02 0.00 0.04 

BG 0.06 0.01 0.08 0.55 0.04 0.08 0.00 0.04 

SNNPR 0.00 0.01 0.01 0.02 0.10 0.00 0.00 0.02 

By rainfall regime 

Low rainfall  0.25 0.12 0.03 0.15 0.05 0.02 0.00 0.02 

High rainfall  0.21 0.10 0.02 0.41 0.06 0.03 0.01 0.05 

 

Data 

The data used in this study were collected between December 2004 and November 2005 by the Ethiopian 
Development Research Institute (EDRI) and the International Food Policy Research Institute (IFPRI), in 
collaboration with the Environmental Economics Policy Forum for Ethiopia (EEPFE) for the project Food 
and Water Security under Global Change: Developing Adaptive Capacity with a Focus on Rural Africa, 
funded by the Federal Ministry for Economic Cooperation and Development, Germany. This cross-
sectional household- and plot-level survey covered 5 regions, 20 districts, 13 zones, and 20 woredas, with 
50 households selected in each woreda. The study covered a total sample size of 1,000 households with 
6,000 plots. For details on the sample design and sampling procedure used in the study, see Deressa et al. 
(2008). Historical rainfall data for the period 1951 to 2000 was provided by the IFPRI water research 
team’s Climate Research Unit of East Anglia database (Mitchell et al. 2004; Mitchell and Jones 2005).  
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Estimation Procedure 

The analysis involved both descriptive and econometric analyses, with the descriptive statistics involving 
bivariate analysis and paired t-tests for hypothesis testing. The econometric analysis followed the Just and 
Pope approach using the Cobb-Douglas production function described in the above theoretical framework 
section. As described in the theoretical framework, the econometric model being estimated is of the form 
y=f(X) + h(X), where f(X) is the mean function and h(X) is the variance function. We are aware of other 
functional forms like the trans log specification, but the focus of this paper is not on estimating the 
magnitude of elasticities of all inputs in the production function but on testing the qualitative risk effects 
of the SWC technologies after controlling for other exogenous covariates that might be correlated with 
output. Thus, the Cobb-Douglas functional form is sufficient to serve the purpose of this paper. Although 
it imposes well-known restrictions on production parameters, the Cobb-Douglas functional form is 
frequently used in partial productivity studies (Smale et al. 1998). Nonetheless, all functional forms 
impose some restrictions, and even when enough is known to specify them adequately, greater flexibility 
is achieved with losses in degrees of freedom and increased collinearity (Griffen et al. 1987).  

We tried to estimate the Just and Pope production function using the more efficient full 
information maximum likelihood procedure, but we failed to achieve convergency for some estimations, 
especially the heterogeneous subsample estimations. To circumvent this, we used the three-stage FGLS 
procedure outlined by Judge et al. (1982, pp. 416–423). Following the Judge et al. procedure, in the first 
step we ran the mean function f(X) using ordinary least squares (OLS); in the second step we predicted 
the residuals and then constructed squared residuals; and in the third step we used the squared residual as 
the dependent variable for the variance function estimation h(X) using OLS. Our main interest is on these 
third-stage OLS estimates of the variance function, where a positive coefficient implies risk-increasing 
effects, and conversely a negative coefficient implies a risk-decreasing effect of the input on crop output. 

Variables and Econometric Diagnostics 

Our analysis is implemented at the plot level because the focus of the study is on SWC technologies that 
were observed at the plot level and our dependent variable was also measured at the same level. This level 
of analysis is advantageous because it captures more spatial heterogeneity and also helps to control for 
plot-level covariates that condition crop production and hence help to minimize the omitted variable bias 
that would confound household-level analysis. 

The dependent variable for our Cobb-Douglas specification was expressed as value of crop 
production per hectare, which is a better representation than yield because some plots had intercropping 
with more than one crop, making estimation of single crop-production functions difficult. This approach 
of aggregating all crops on a plot into a single measure of value of crop production per acre rather than 
using individual crop yields has been used in many previous plot-level-based microeconometric studies in 
Ethiopia and sub-Saharan Africa (Pender and Gebremedhin 2007; Pender et al. 2001, 2004 Nkonya et al. 
2004, 2005, 2008; Benin 2006; Jansen et al. 2006). We used woreda average prices to estimate aggregate 
crop production at the plot level; therefore, our production estimates are not affected by variations in local 
prices. However, we did not have lagged prices but used current prices, which might have potential 
problems of being correlated with proximity to markets, the price of fertilizer, and the price of seeds 
because we are using a cross-sectional framework.  

Although the focus of this study is on SWC technologies, we also controlled for a number of 
explanatory variables that would be correlated with the observed plot-level crop outputs. The explanatory 
variables (X) we controlled for included both plot-level and household-level covariates. The plot-level 
covariates included plot area, biophysical characteristics (e.g., soil type, fertility status, slope, and soil 
depth), inputs used on the plot (e.g., draft power, fertilizers, purchased seeds, own seeds, family labor, 
and hired labor), land management practices used on the plot (e.g., manure and compost), and land 
investments on the plot (e.g., soil bunds, stone bunds, waterways, trees, contours, and irrigation). 
Household-level covariates included characteristics of the household head (sex, age, education). We also 
included an interaction term between improved seed, fertilizer, and irrigation to examine the 
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complementarity between these technologies and in which niches they would have high payoffs. For the 
full-sample estimations, regional fixed effects were included to control for unobserved time-invariant 
characteristics that might be correlated with the dependent variable, which also mitigates the omitted 
variable bias problem.  

The double logarithmic functional form of the Cobb-Douglas specification used in the Just and 
Pope framework helped to improve normality of the residuals, thus reducing problems of nonlinearity, 
heteroskedasticity, and sensitivity to outliers (Mukherjee et al. 1998). In all the multivariate estimations, 
we used the Huber-White estimator (White 1980), which is robust to heteroskedasticity of unknown form. 
We tested for multicollinearity using the variance inflation factors (VIF) and also by pairwise 
correlations. Multicollinearity was not a serious problem: the VIFs were less than 3.0 and the pairwise 
correlations were less than 0.5, indicating that the standard errors were not being affected by collinearity 
problems. Another potential problem could arise from the possible endogeneity bias of the SWC 
technologies. However, since these investments are long-term investments that are likely to have been on 
the plot long before the current period of analysis, the decisions for the farmer to have these structures on 
the plot will be predetermined or exogenous to the current level of production. Therefore, the endogeneity 
bias is not a serious problem. 
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4.  RESULTS AND DISCUSSION 

Descriptive Results 

Descriptive results are presented in Tables 1, 2, and 3. Using historical rainfall data at the woreda 
(district) level from 1951 to 2000, we classified the woredas sampled in the Nile River basin of Ethiopia 
into those receiving high and low rainfall as shown in Table 2. All the woredas in the Tigray and SNNPR 
regions in our sample fell into the low-rainfall quantile, while those in Amhara, Oromiya, and BG regions 
fell into both the low- and high-rainfall quantiles (Table 2). For the woredas in Amhara, Oromiya, and 
BG, we found highly significant differences in mean rainfall amounts between the low- and high-rainfall 
quantiles (Table 3), which gave us more confidence in the classifications that were generated. As 
expected, Tigray appears to be the driest region among the five, and Oromiya had the highest average 
rainfall from 1951 to 2000.  

Table 2. Classification of woredas into rainfall regimes by region 

 Low High 

Tigray 

Atsbi Wenberta X  

Endamehoni  X  

Hawzen  X  

Amhara 

Bichena X  

Chilga X  

Debark X  

Kemkem X  

Quarit  X 

Wegera X  

Oromiya 

Bereh-Aleltu  X  

Gimbi  X 

Haru X  

Hidabu-Abote X  

Kersa X  

Limu  X 

Nunu-Kumba  X 

BG 

Bambesi X  

Sirba Abay  X 

Wonbera  X 

SNNPR 

Gesha-Deka X  
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Table 3. Distribution of rainfall (mm) in low- and high-rainfall woredas by region 

Region 
Mean-low-rainfall 

woredas 
Mean-high-rainfall 

woredas 
T-test (P value) 

Ho: No mean difference 

Tigray 
572 
(3.2) 

— — 

Amhara 
883 
(5.3) 

1,075 
(1.5) 

0.000*** 

Oromiya 
922 
(2.1) 

1,180 
(1.4) 

0.000*** 

BG 
967 
(0.6) 

1,093 
(0.3) 

 
0.000*** 

SNNPR 
1,006 
(0.1) 

— — 

***: The difference is statistically significant at the 1% level. 
Note: Numbers in parentheses are standard errors. 

Interestingly, soil bunds (63 percent) are highest on plots in the drier Tigray region than in any 
other region, waterways are most common on plots in the BG region (55 percent), and trees are most 
reported in the SNNPR region (Table 1). Overall, by region, the most common SWC investments are as 
follows: Tigray, soil bunds and stone bunds; Amhara, waterways and stone bunds; Oromiya, soil bunds 
and waterways; BG, waterways; and SNNPR, trees; as shown in Table 1. Further, descriptive analysis in 
Table 1 reveals that plots in low-rainfall areas have disproportionately more stone bunds and soil bunds 
than plots in high-rainfall areas, and those in high-rainfall areas have more waterways and irrigation. It 
might appear surprising that irrigation is more prevalent on plots in high-rainfall areas than in low-rainfall 
areas. However, irrigation requires a minimum amount of rainfall or more costly structures in low-rainfall 
areas. Investigation in a multivariate framework makes it possible to examine whether more returns with 
irrigation are realized in high-rainfall environments after controlling for confounding factors at the plot 
level. This descriptive evidence shows a clear spatial heterogeneity in Ethiopia in the use of SWC 
technologies, suggesting that different SWC investments perform differently in different regions and 
agro-ecological niches.  

The next section describes the multivariate analysis used to assess the risk implications of the 
adoption of SWC technologies after controlling for other possible confounding factors. 
 

Econometric Results 

Effects of Soil and Water Conservation Technologies on the Average, and Variance of Crop 
Yields in Low- and High-Rainfall Areas 

Econometric results are presented in Tables 4, 5, and 6 for the mean and variance functions for both the 
low- and high-rainfall areas in Ethiopia. As shown in Table 4, all SWC technologies considered in this 
study (stone bunds, soil bunds, grass strips, waterways, trees, and contours) showed positive and very 
highly significant impacts on crop output in the low-rainfall areas, but only waterways and trees showed 
strong and significant positive effects in high-rainfall areas. The finding that stone bunds and soil bunds 
show positive significant mean impacts on crop production only in low-rainfall areas supports the 
descriptive evidence that these technologies were observed more often on plots in low-rainfall areas; this 
is also consistent with previous studies in Ethiopia that made similar observations (Kassie et al. 2008; 
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Bekele 2005; Gebremedhin et al. 1999). Kassie et al. (2008) and Bekele (2005) both found stone bunds to 
have favorable impacts on production in low-rainfall areas. Another interesting result from the mean 
functions is that grass strips showed the largest significant production elasticity among the SWC 
technologies only in the low-rainfall areas, which supports the empirical finding by Shiferaw and Holden 
(2001) in their economic analysis of soil conservation in Ethiopia, where grass strips showed the highest 
net benefits in low-rainfall areas. 

Table 4. Effects of soil conservation structures on mean and variance of crop production by rainfall 
regimes, mean function, and variance function estimates 

Variable Low-rainfall areas High-rainfall areas 

Plot characteristics Mean function Variance function Mean function Variance function  

Use irrigation 0.041 1.091 -0.253*** 0.103 

Log plot area -0.604*** 0.05 -0.592*** -0.118 

Log draft power 0.151*** -0.135 0.144*** -0.244*** 

Soil color (cf. clay) 

Sand -0.108 0.057 -0.08 0.191 

Dark -0.127** 0.115 0.09 0.019 

Red -0.107* 0.174 0.155*** 0.180** 

Other -0.633*** 0.244 -0.365 2.238 

Dark red -0.098 -0.1 -0.063 0.247 

Brown -0.036 -0.014 0.084 -0.431 

Soil fertility (cf. high) 

 Moderate -0.169*** -0.027 -0.110*** 0.127* 

 Infertile -0.043 -0.260** -0.228*** 0.174* 

Soil slope (cf. flat)     
Moderate 0.034 -0.105 -0.066* 0.131** 

Steep -0.079 -0.02 0.022 0.245 

Soil depth (cf. shallow) 

Deep  0.193*** -0.14 -0.011 0.051 

Moderate 0.130** -0.062 0.082 -0.039 

Land investments 

Soil bund 0.122** -0.211** 0.076 -0.308*** 

Stone bunds 0.177*** -0.15 0.123* -0.342** 

Grass strips 0.334*** -0.04 0.147 -0.561*** 

Waterway 0.195*** 0.081 0.187*** -0.402*** 

Trees -0.073 -0.086 0.298*** -0.135 

Contour 0.237* 0.117 -0.044 -0.321** 

Other 0.038 -0.887** -0.107 -0.362 

Land management practices 

Log urea 0.023* -0.015 0.034*** -0.045*** 

Log dap -0.001 0.018 0.030*** 0.012 
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Table 4. Effects of soil conservation structures on mean and variance of crop production by rainfall 
regimes, mean function, and variance function estimates (continued) 

Variable Low-rainfall areas High-rainfall areas 

Plot characteristics Mean function Variance function Mean function Variance function 

Log manure 0.018** -0.026* 0.01 -0.012 

Log compost -0.011 0.025 0.032** 0.007 

Log traditional seed 0.286*** -0.116** 0.201*** -0.158*** 

Log improved seed 0.212*** -0.033 0.190*** -0.132*** 

Fertilizer*seed*irrigation -0.073 0.160* 0.016*** 0.004 

Labor endowments 

Log family men 0.085*** 0.059 0.114*** -0.034 

Log family women 0.045*** -0.071* -0.037** 0.125*** 

Log family child -0.009 0.060** -0.047*** 0.005 

Log hired men 0.026 0.123*** 0.037** 0.036 

Log hired women 0.056* 0.084 -0.002 -0.05 

Log hired child 0.167*** -0.367*** -0.152 0.156* 

Household factors 

Sex household head (1=female) -0.041 0.019 0.053 -0.148 

Log education years of head -0.048 -0.042 -0.113** -0.017 

Log age household head -0.181*** 0.639*** -0.205*** 0.063 

Regions (cf. Tigray) 

Amhara -0.314*** 0.151 -0.641*** 0.088 

Oromiya -0.064 -0.317*** -0.698*** -0.135* 

BG 0.343*** -0.374* 0.000 0.000 

SNNPR -0.106 -0.477*** 0.000 0.000 

_cons 4.435*** -1.063 5.442*** 0.899** 

 
N 2847 2847 2826 2826 
*, **, ***: The difference is statistically significant at the 10%, 5%, or 1% level, respectively. 
 

Although most of the SWC technologies are showing significant positive effects on the mean of 
production as discussed above in the low-rainfall areas, surprisingly only soil bunds have a significant 
risk-reducing effect. This explains why almost 30 percent of the plots (Table 1) have these investments 
and why other interventions that also have high, positive impacts on yield in these low-potential areas are 
used much less.  

In high-rainfall, high-agricultural potential areas, most of the SWC technologies considered in 
this study have significant risk-reducing effects. Soil bunds, stone bunds, grass strips, waterways, and 
contours all have very significant and negative effects on yield variability and hence are risk-reducing in 
high-rainfall areas.  

Although both traditional and improved seeds show significant positive effects on increasing 
average crop production in both low- and high-rainfall areas, they have different effects on the variance of 
crop production. Traditional seed is risk reducing in both low- and high-rainfall areas, while improved 
seed is only significantly risk reducing in high-rainfall areas. These results on the whole suggest that soil 
bunds and traditional seeds would be appropriate strategies to adapt to climate change in low-rainfall 
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areas. Improved seeds, traditional seeds, stone bunds, soil bunds, grass strips, waterways, and contours 
appear to be promising adaptation strategies in high-rainfall areas. 

Mean and Variance Effects in Low-Rainfall Areas by Region  

The effects of SWC technologies vary not only by high- and low-rainfall areas, but also by region within 
those areas. To check for robustness of our results, we have presented results with and without controlling 
for the major crop type on the plot, considering crop type is likely to be endogenous. The results appear 
qualitatively very robust as shown in Tables 5 and 6, so the discussion will mainly follow results in Table 
5. The results for low-rainfall areas show that in Amhara and Oromiya soil bunds are risk reducing, and 
that stone bunds are significantly risk reducing in low-rainfall areas of SNNPR. Grass strips, waterways, 
and trees are only risk reducing in SNNPR. Irrigation has no significant risk-reducing effects in any 
region in the low-rainfall areas but shows a significant risk-increasing effect in the low-rainfall areas of 
Tigray (Table 6) after controlling for the major crop type on the plot. The risk-increasing aspect of 
irrigation in low-rainfall areas seems counterintuitive considering irrigation is intended to mitigate the 
adverse effects of low rainfall. We have no indicators regarding the quality of irrigation in the survey. If 
irrigation is based on small storage, as is the case for water-harvesting structures in Tigray, then 
insufficient rainfall and droughts can prevent full-control irrigation, and irrigation can actually be risk-
increasing. Generally, studies on water harvesting have found mixed results for Ethiopia. Reasons for 
failure include poor technical design; lack of water, which could be stored in dry years; inappropriate and 
costly placement; and lack of community sensitization—some ponds were constructed under food-for-
work programs and, despite appropriate design, abandoned after these programs ended because social, 
economic, and management factors were inadequately integrated in the pond development system 
(Awulachew et al. 2005; Lemma 2007). 
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Table 5. Risk effects of soil conservation structures on crop production by region and rainfall regime, variance function estimates 

 Variance Function 

Variable Tigray Amhara Oromiya BG SNNPR 

Plot characteristics Low  Low High Low High Low High Low 

Use irrigation 2.855 2.478 0.357 0.138 0.031 -2.601 -0.442*** -0.122 

Log plot area 0.046 0.216 -0.113 0.023 -0.143* -0.319 -0.167 0.200*** 

Log draft power 0.022 -0.547 -0.605*** -0.122* -0.207*** 0.37 0.018 0.028 

Soil color (cf. clay) 

Sand -0.085 0.051 0.197 0.24 -0.331* -0.405 -0.183 -0.347** 

Dark 0.055 0.273 0.042 -0.466 -0.119 -0.267 -0.47 0.029 

Red 0.069 0.482* 0.303*** -0.581** 0.032 -0.156 -0.464 0.097 

Other 0.485* -1.248** 1.582 0.126 0 0 0 0 

Dark red 0 -0.33 0.236 -0.345 0 0 -0.707* 0 

Brown 0 0.805 -0.426 0 0 0 0 0 

Soil fertility (cf. high) 

 Moderate -0.057 0.158 0.256*** 0.061 0.147 0.432 -0.035 -0.181** 

 Infertile -0.118 -0.186 0.243* 0.088 0.261** 0.113 0.041 0 

Soil slope (cf. flat) 

Moderate 0.006 -0.136 0.155* -0.044 -0.038 -0.552 0.13 -0.064 

Steep -0.219 -0.097 0.365 0.025 -0.032 -0.552 0.048 -0.001 

Soil depth (cf. shallow)         

Deep  -0.038 -0.035 0.101 0.194 -0.32 -0.474 0.311 -0.179** 

Moderate -0.005 -0.015 0.086 0.145 -0.391 -0.074 0.247 -0.123** 

Land investments 

Soil bund 0.135 -0.481* -0.174 -0.181* -0.306* 0.568 -0.471** 0.000 

Stone bunds -0.163 -0.024 -0.418** 0.061 -0.387* 0.717 0.000 -0.262** 

Grass strips -0.087 0.000 -0.777*** -0.166 -0.446** 0.880** -0.520*** -0.257*** 

Waterway 0.083 0.132 -0.477*** 0.155 -0.1 0.63 -0.328** -0.260* 
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Table 5. Risk effects of soil conservation structures on crop production by region and rainfall regime, variance function estimates 
(continued) 

 Variance Function 

Variable Tigray Amhara Oromiya BG SNNPR 

Plot characteristics Low  Low High Low High Low High Low 

Trees 0.978** -0.259 -0.659*** 0.64 -0.017 0.131 -0.602*** -0.126* 

Contour 0.000 -0.815 -0.602*** 0.163 0.272 0.348 -0.176 0.000 

Other 0.000 -1.619 -0.219 -0.393*** -0.438* 0.000 -0.577* 0.000 

Land management practices 

Log urea -0.070** 0.147 -0.016 -0.034 -0.028 0.027 -0.017 0.000 

Log dap 0.065* -0.016 -0.034 -0.014 0.077*** 0.101 -0.011 -0.110*** 

Log manure -0.041*** 0.070* 0.011 -0.01 -0.028** -0.058 0.024 -0.009 

Log compost 0.061 -0.001 -0.001 -0.006 0 -0.021 -0.051 0.000 

Log traditional seed -0.125** -0.119 -0.161*** -0.061* -0.130*** -0.09 -0.119* -0.019 

Log improved seed -0.055 -0.016 -0.130** -0.025 -0.185*** 0.041 -0.108 -0.034 

Fertilizer*seed*irrigation 0.332*** 0.000 0.013 0.016 -0.004 0.000 0.037  
Labor endowments 

Log family men 0.170*** -0.016 -0.054 0.000 0.026 0.477 -0.042 0.101* 

Log family women 0.029 -0.260** 0.162*** 0.058 0.019 -0.493 0.029 -0.036 

Log family child 0.076 0.236*** -0.015 -0.128*** -0.051** -0.147 0.037 -0.083* 

Log hired men 0.132** 0.109 0.02 0.092** 0.134* -0.513 0.04 -0.176*** 

Log hired women 0.007 -0.028 -0.071 0.201** -0.339*** 0.601 -0.003 0 

Log hired child 0 -0.452** 0.002 -0.135 0.338*** -0.524 -0.279*** 0 

Household factors 

Sex household 
head(1=female) 0.148 -1.047*** -0.212 0.465*** 0.171 0.82 0.019 0 
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Table 5. Risk effects of soil conservation structures on crop production by region and rainfall regime, variance function estimates 
(continued) 

 Variance Function 

Variable Tigray Amhara Oromiya BG SNNPR 

Plot characteristics Low  Low High Low High Low High Low 

Log education years of 
head -0.293*** 1.255*** -0.166 -0.383*** 0.021 0.212 0.196 -0.212*** 

Log age household head 0.514*** 2.460*** -0.280* 0.139 0.382*** 0.344 0.096 -0.052 

Lograin 0.11 1.216* -1.161 0.636 -0.788 33.916 -5.536 20.527* 

_cons -2.856 -12.807** 10.394* -4.366 5.537 -233.837 39.926 -141.556* 

 

Table 6. Risk effects of soil conservation structures on crop production by region and rainfall regime controlling for major crop type, 
variance function estimates 

Variance Functions with Major Crop Type 

Variable Tigray Amhara Oromiya BG SNNPR 

Plot characteristics Low Low High Low High Low High Low 

Use irrigation 2.601* 2.51 0.372 0.094 -0.044 -2.043 -0.427*** -0.023 

Log plot area 0.086 0.201 -0.111 0.039 -0.186** -0.343* -0.204 0.103* 

Log draft power -0.054 -0.502 -0.572*** -0.058 -0.266*** 0.324 0.048 0.065 

Soil color (cf. clay) 

Sand -0.053 0.053 0.179 0.970** -0.378** -0.024 -0.204 -0.430*** 

Dark 0.033 0.295 0.071 0.422 -0.224 -0.356 -0.337 -0.058 

Red 0.138 0.496* 0.312*** 0.275 -0.072 -0.243 -0.369 -0.031 

Other 0.502** -1.138** 1.368 0.514 0 0 0 0 

Dark red 0 -0.26 0.22 0.712 0 0 -0.493 0 

Brown 0 0.806 -0.385 0 0 0 0 0 
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Table 6. Risk effects of soil conservation structures on crop production by region and rainfall regime controlling for major crop type, 
variance function estimates (continued) 

Variance Functions with Major Crop Type 

Variable Tigray Amhara Oromiya BG SNNPR 

Soil fertility (cf. High) 

  Moderate -0.078 0.118 0.230** 0.068 0.101 0.341 -0.076 -0.054 

  Infertile -0.135 -0.205 0.293** 0.019 0.173 0.097 0.088 0 

Soil slope (cf. flat) 

Moderate 0.028 -0.128 0.158* -0.055 -0.118 -0.422 0.152* -0.089** 

Steep -0.207 -0.075 0.37 -0.035 -0.159 -0.707 0.046 0.078 

Soil depth (cf. shallow)         

Deep  -0.12 -0.031 0.115 0.14 -0.460* -0.403 0.243 -0.161** 

Moderate -0.054 0.011 0.059 0.095 -0.511** -0.089 0.206 -0.154** 
Land investments 

Soil bund 0.147 -0.457* -0.138 -0.163 -0.296* 0.49 -0.405** 0 

Stone bunds -0.146 -0.033 -0.415*** 0.007 -0.423** 0.365 0 -0.183 

Grass strips -0.077 0 -0.623*** -0.248 -0.474*** 0.681** -0.366*** -0.239*** 

Waterway -0.101 0.173 -0.424*** 0.121 -0.117 0.514 -0.232* -0.300** 

Trees 1.086** -0.237 -0.595*** 0.686 -0.063 0.108 -0.465*** -0.085 

Contour 0 -0.784 -0.584*** 0.03 0.224 0.254 -0.034 0 

Other 0 -1.682 -0.257 -0.465*** -0.560** 0 -0.295 0 

Land management practices 

Log urea -0.058* 0.171 -0.017 -0.034 -0.046* 0.027 0.003 0 

Log dap 0.066* -0.024 -0.027 0.013 0.068*** -0.022 -0.003 -0.103*** 

Log manure -0.043*** 0.074** -0.002 0.014 -0.028** -0.061 0.015 0.004 

Log compost 0.044 -0.007 -0.024 0.005 0 0.006 -0.022 0 

Log traditional seed -0.122*** -0.103 -0.147*** -0.03 -0.204*** -0.101 -0.09 -0.017 
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Table 6. Risk effects of soil conservation structures on crop production by region and rainfall regime controlling for major crop type, 
variance function estimates (continued) 

Variance Functions with Major Crop Type 

Variable Tigray Amhara Oromiya BG SNNPR 

 
Log improved seed -0.065 0.001 -0.121** 0.008 -0.259*** -0.032 -0.087 -0.008 

Fertilizer*seed*irriga’n 0.376*** 0 0.011 0.013 -0.004 0 0.027  

Labor endowments 

Log family men 0.175*** -0.012 -0.061 -0.033 0.053 0.448 -0.05 0.009 

Log family women 0.054* -0.260** 0.148*** 0.029 0.035 -0.507 -0.02 -0.007 

Log family child 0.078* 0.232*** -0.014 -0.106*** -0.054** -0.103 0.045 -0.012 

Log hired men 0.125** 0.097 0.021 0.087* 0.132* -0.41 0.05 -0.195*** 

Log hired women 0.025 -0.039 -0.059 0.171** -0.229** 0.532 -0.053 0 

Log hired child 0 -0.437** 0.013 -0.073 0.171** -0.507 -0.233*** 0 

Household factors 

Sex household 
head(1=female) 0.188 -0.956*** -0.173 0.386** 0.195* 0.58 0.01 0 

Log education years of 
head -0.202** 1.241*** -0.098 -0.438*** 0.053 0.255 0.235* -0.133** 

Log age household head 0.557*** 2.384*** -0.318* 0.043 0.318*** 0.395 0.038 -0.052 

Climate          

Log rain -0.008 1.160* -1.239 0.555 -0.729 38.330** -5.737 16.372* 

Crop type (c.f Barley) 

Teff -0.418** -0.266 -0.058 -0.04 0.158* -0.058  0.023 

Maize 0.667 -0.601 -0.111 0.844*** -0.256*** -0.129  0.104 

Millet -0.500*** 0.21 -0.274** -0.101 -0.347*** -0.039  0 

_cons -1.997 -12.340** 11.166* -4.46 5.963 -264.011** 41.387 -112.643* 

         

N 801 755 1556 704 887 245 383 342 

r2 0.198 0.125 0.087 0.194 0.147 0.127 0.106 0.217 
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Mean and Variance Effects in High-Rainfall Areas by Region 

The results for high-rainfall areas show that soil bunds are risk increasing in Oromiya and BG, while all 
other technologies tend to reduce production risk. Stone bunds are risk reducing in Amhara and Oromiya; 
grass strips are risk reducing in Amhara, Oromiya, and BG; waterways are risk reducing in Amhara and 
BG; trees are risk reducing in Amhara and BG; and contours are risk reducing Amhara. Irrigation has 
risk-reducing effects in BG. 
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5.  CONCLUSIONS AND POLICY IMPLICATIONS 

The results of the empirical analysis show that SWC technologies have significant impacts on reducing 
production risk in Ethiopia and could be part of the country’s climate-proofing strategy. The results also 
show that one-size-fits-all recommendations are not appropriate given the differences in agro-ecology and 
other confounding factors. Performance of these technologies is location specific, and therefore, programs 
aimed at promoting SWC measures as part of a strategy to adapt to climate change should acknowledge 
these differences. 

Overall, in low-rainfall areas soil bunds appear to be investments with a risk-reducing effect on 
production; while stone bunds are risk reducing in low-rainfall areas of Amhara and Oromiya. In addition, 
grass strips, waterways, and trees, which are less capital intensive, also appear to have a risk-reducing 
effect in these dry environments, as shown in the SNNPR and BG regions. Contours, irrigation, and 
improved seed technologies do not seem to have any significant effects on reducing production risk in 
these areas with low agricultural potential and therefore should not be promoted as part of an effort to 
adapt to climate change.  

In high-rainfall areas, most soil conservation technologies appear to have positive effects on 
reducing production risk, with some variation by region. Irrigation, traditional seed, and improved seed 
also have good potential as adaptation strategies for mitigating climate-change effects through reducing 
production risk in these areas, which have high agricultural potential. 

The results have demonstrated that although most of the SWC investments have significant, 
positive mean impacts on yields in low-rainfall areas, they do not all show a correspondingly similar risk-
reducing effect, which might explain their low adoption rates in these areas. Therefore, promotion of 
adaptation strategies should be location specific and mindful of spatial and risk-related differences in 
Ethiopia.  
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